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Breast Cancer: A Global Health Challenge

▶ Breast cancer (BC) is the most diagnosed cancer among
women globally, and accounts for almost 15% of all female
cancer-related deaths.

▶ The most widely accepted classification of BC subtypes
consists of the following major molecular subtypes [1]:

Figure: Molecular Classification of Breast Cancer Cells
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Breast Cancer: A Global Health Challenge

▶ Among these, Estrogen Receptor-Positive (ER+) is the most
prevalent subtype, accounting for ≈ 70-80% of cases...

▶ ... but also offers the best treatment path → Endocrine
therapy, particularly w/ Tamoxifen.

▶ By binding to ERs, Tamoxifen acts as an antagonist in breast
tissue, effectively blocking estrogen’s proliferative effects.
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The Challenge of Tamoxifen Resistance

▶ The development of tamoxifen has shown to reduce
recurrence by ∼50% and mortality by ∼30% after a
standard 5-year treatment following surgery [2].

▶ However, despite the success of tamoxifen, a significant nº of
patients develop resistance to the drug → estimated to be
between 30-50% [1]

▶ Early identification of resistant cases avoids wasting a critical
5-year therapy window.
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Our Approach: A Bayesian Framework

▶ We propose a Bayesian modeling framework to analyze the
complex mechanisms driving tamoxifen resistance...

▶ ... By integrating RNA sequencing data from both cell-lines
and publicly available patient data.

▶ Our approach allows for the incorporation of biologically
motivated prior expert knowledge, as well as SOTA
developments in computational statistics.

Tamoxifen Resistance Modeling Introduction 7 / 41



Outline

Introduction

Objectives & Available Data

Ethical Considerations of the Project

Processing Pipeline: Multi-Source Data Integration

Development of Prognostic Models

Identification of Potential Genetic Biomarkers

Conclusions & Future Work



Objectives

Our Goal...

To analyze this biological phenomenon responsible for the
development of resistance to tamoxifen in ER+ breast can-
cer cells by integrating cell-patient data.

More concretely:
▶ To identify potential genetic biomarkers associated with

tamoxifen resistance in ER+ breast cancer cells.
▶ To develop robust and interpretable prognostic models for

predicting treatment outcomes (including integrated data).
▶ To develop pyHaiCS, an open-source Python library for

computational statistics based on Hamiltonian-inspired
Monte-Carlo methods.
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Available Data

The following data has been provided by the lab at CIC bioGUNE:
1. RNA-seq data from MCF7 cell-lines (both resistant & control

have been independently sequenced three times).
2. RNA-seq data from patients who have been classified as

resistant or as responsive to tamoxifen treatment. This data
comes from public cancer repositories (i.e., TCGA).
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Ethical Considerations of the Project

▶ Our work has direct implications for patient care and clinical
decision-making...

▶ This ethical responsibility is not limited to the technical
aspects of our work, but also extends to the social and
environmental dimensions of our research.

▶ We must consider the potential impact of our work on
vulnerable populations, ensuring equitable access to
healthcare technologies, and promoting safety and
sustainability.
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Ethical Considerations of the Project

This work adheres to the ethical obligations of service to society,
health, and public welfare.

Guiding Principles

▶ Beneficence: Aim to improve patient outcomes by
predicting resistance to long ineffective treatments.

▶ Justice: Promote equity through the pyHaiCS library,
democratizing access to advanced methods.

▶ Autonomy & Responsibility: Promote accountability
for the technical validity of our models. We respect
patient autonomy by ensuring our approach supports
informed decision-making.
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Ethical Considerations of the Project

This work adheres to the ethical obligations of service to society,
health, and public welfare.

Ethical Practice

▶ Data Privacy: All patient data is fully anonymized in
compliance with GDPR, maintaining no connection
between genetic profiles and patient identities.

▶ Open Science: Development of pyHaiCS promotes
transparency, and collaborative improvement.

▶ Transparency: Maintaining interpretable models and
documentation to support informed clinical
decision-making.
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Multi-Source Data Integration

▶ Our core challenge is to bridge the gap between controlled
in-vitro experiments and complex in-vivo patient realities...

▶ We hypothesize that genes showing concordant expression
changes in both resistant cells and resistant patients are the
most robust candidates for predicting resistance.

Data Integration Logic

Cell-Line Data + Patient Data
(MCF7 CTRL vs. TamR) (Responsive vs. Resistant)

⇓
Refined list of high-confidence biomarkers
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Multi-Source Data Integration

We follow a multi-step pipeline to distill the most relevant genetic
biomarkers from tens of thousands of possibilities:

1. Filter out low-expression genes (count < 30) and apply Relative
Log Expression (RLE) normalization to make counts comparable
across all samples.

2. Perform Differential Expression Analysis (DEA) independently
on both cell-line and patient datasets to identify statistically
differentially expressed genes in resistant vs. sensitive groups.

3. Apply a statistical filter to keep only the most significant genes:
(|log2 FC| > 0.5) and (FDR < 0.1).

4. Integrate the two filtered lists by selecting only genes that are
differentially expressed in the same direction (i.e., over-expressed
or under-expressed in both cases).
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Multi-Source Data Integration

This rigorous filtering process drastically reduces the feature
space from over 36,000 genes to just 10 candidate biomarkers.

(Left: MCF7 Cell-Lines, Right: TCGA Patients)
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Quick Detour: Bayesian Inference

In Bayesian inference, our goal is to understand the posterior
distribution which describes our belief about the model parameters
after seeing the data:

Posterior︷ ︸︸ ︷
p(θ|x) =

Prior︷︸︸︷
p(θ)

Likelihood︷ ︸︸ ︷
p(x |θ)

p(x)︸︷︷︸
Marginal Likelihood

(1)

▶ This posterior is often a complex, high-dimensional distribution that
we can’t solve analytically.
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(2)

▶ Actually, given a new observation x̃ , predictions can be made by
using the posterior predictive distribution as:

p(x̃ |x) =
∫

p(x̃ , θ|x)dθ =

∫
p(x̃ |θ)p(θ|x)dθ (3)
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Quick Detour: Bayesian Inference

Since the integral has no analytical solution, we must draw samples to
approximate it.

▶ Standard MCMC methods use inefficient random walks to explore
the probability space, which converge poorly in high dimensions.

▶ Hamiltonian Monte-Carlo (HMC) uses a much smarter approach
inspired by classical mechanics to propose new samples.

▶ The core idea is to augment our parameters, or the position (θ),
with an auxiliary momentum variable (p). This creates a physical
system whose total energy is described by the Hamiltonian:

H(θ,p) = K (p) + U(θ) =
1
2

pT M−1p + U(θ) (4)
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Quick Detour: Bayesian Inference

▶ Instead of a random step, we simulate this system’s evolution
through the numerical integration of the Hamiltonian dynamics:

θ̇ = Hp(θ,p) = M−1p, ṗ = −Hθ(θ,p) = −Uθ(θ) (5)

▶ Where the Hamiltonian potential U(θ) is related to the target
distribution by: U(θ) = − log π(θ) + C.

▶ In practice, the integration of the target dynamics is carried out by
combining the following solution flows:

φA
t (θ,p) = (θ + tM−1p,p), φB

t (θ,p) = (θ,p − tUθ(θ)) (6)

Combining these flows gives rise to various numerical integrators, and
further enhancements lead to different sampling algorithms like HMC,
GHMC, etc.
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pyHaiCS: A New Tool for Bayesian Inference

▶ Introducing pyHaiCS: a new
Python library for Hamiltonian
Monte-Carlo (HMC) methods.

▶ Built on JAX for high performance:
Just-In-Time (JIT) compilation,
automatic differentiation, and
hardware acceleration
(CPU/GPU/TPU).

▶ Implements a wide range of SOTA
samplers, numerical integrators,
and adaptive tuning algorithms.

▶ Designed to be user-friendly and
easily integrable with existing
scientific Python workflows.

pyHaiCS

Samplers Integrators Adaptive Tuning Sampling Metrics

RWMH

HMC

GHMC

MMHMC

Leapfrog-Verlet

2-Stage MSSI

3-Stage MSSI

Velocity-Verlet

BCSS

Minimum-Error

s-AIA HMC

s-AIA GHMC

AR

PSRF

ESS

MCSE

GRAD-e

IACT
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The Challenge of Data Imbalance

▶ The patient dataset is highly imbalanced: only ∼30% of patients
are resistant to tamoxifen.

▶ In this clinical context, failing to identify a resistant patient is far
more critical than misclassifying a sensitive one.

▶ Therefore, standard metrics like accuracy are misleading. We focus
on Recall (Sensitivity) and the Matthews Corr. Coeff. (MCC).

Solution: Data Augmentation with SMOTE

We use the Synthetic Minority Oversampling Technique
(SMOTE) to balance the dataset by generating synthetic samples
for the minority (resistant) class. All models were trained and eval-
uated on both the original and augmented datasets to measure
the impact.
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Development of Prognostic Models

We developed a wide range of models to predict tamoxifen resistance:

Bayesian Models:

▶ Bayesian Logistic Regression (BLR) w/ HMC: Priors for gene
coefficients were set using cell-line data: θi ∼ N (log2 FCi ,2.52).

▶ Bayesian Neural Networks (BNN): Advanced NNs that treat
weights as probability distributions.

Baseline Models:

▶ Shallow Models: Logistic Regression, Support Vector Classifiers.

▶ Ensemble Methods: Random Forest, XGBoost, AdaBoost.

▶ Neural Networks: MLPs, Autoencoders, Variational Autoencoders.
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Development of Prognostic Models

Data augmentation with SMOTE drastically improved the
models’ ability to identify resistant patients...

0.0 0.2 0.4 0.6 0.8 1.0
Recall/Sensitivity

  BNN-2Layer (Aug.)
 MLP-2Layer (Aug.)

 Autoencoder (Aug.)
 Variational Autoencoder (Aug.)

 Random Forest (Aug.)
 BNN-2Layer

  BLR-HMC (Aug.)
 Logistic Regression (Aug.)

  BNN-1Layer (Aug.)
 MLP-1Layer (Aug.)

 AdaBoost (Aug.)
  BLR-GHMC (Aug.)

  BLR-HMC (s-AIA3) (Aug.)
  BLR-HMC (s-AIA2) (Aug.)

 XGBoost (Aug.)
 SVC (Linear Kernel) (Aug.)

 Naive Bayes (Aug.)
 SVC (RBF Kernel) (Aug.)

 Hist-Gradient (Aug.)
MLP-2Layer

AdaBoost
Naive Bayes

 BLR-HMC (s-AIA3)
 BLR-HMC (s-AIA2)

 BLR-GHMC
 BLR-HMC

SVC (Linear Kernel)
Logistic Regression

Random Forest
Autoencoder
 BNN-1Layer
MLP-1Layer

Variational Autoencoder
XGBoost

SVC (RBF Kernel)
Hist-Gradient

M
od

el

Recall/Sensitivity by Model (Sorted by Descending Order,  = Augmented Data,  = Bayesian Model)
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Development of Prognostic Models

Bayesian and deep learning models showed the best overall
performance, especially on the augmented dataset.
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Development of Prognostic Models

Key Takeaways:
▶ Data augmentation (SMOTE) improved all models’ performance

Synthetic samples may not fully represent the underlying biological variability...

▶ On the sensitivity of models to class imbalance...
▶ (Bayesian) Neural Networks achieved best performance

(BNN-2Layer: Recall=0.964, MCC=0.927)

▶ Still, simple shallow models (Logistic Regression/RF) remained
competitive when dealing with the augmented dataset.

▶ Significant improvements over previous work... (Recall of > 0.9 vs. 0.367)

Limitations:
▶ Small cohort size (n = 37 patients), even after augmentation
▶ RNA-seq integration showed limited impact

(BLR-HMC MCC=0.565 vs. BNN-2Layer MCC=0.927, BLR-HMC vs Vanilla LR)
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Explaining the “Black Box”: SHAP Values

▶ To understand why our model makes certain predictions, we
use SHAP (SHapley Additive exPlanations) values.

▶ SHAP is a method from cooperative game theory that
explains the output of any machine learning model by
computing the contribution of each feature (gene) to the
prediction.

▶ It allows us to identify the most important genes that our
models use to predict tamoxifen resistance.

▶ Important Note: SHAP values show correlation, not
causation. They reveal which genes are most predictive for
the model, but do not prove a direct causal role in resistance.
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Potential Genetic Biomarkers (Global)
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▶ Low expression of CISH (blue dots on the right) is strongly
associated with a higher probability of resistance.

▶ CISH has the greatest discerning power in the model’s predictions.

▶ Conversely, high expression of genes like BCAS1 and FRAS1
(red dots on the right) is associated with higher resistance.
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Potential Genetic Biomarkers (Local)

We can also break down the predictions for a single patient...
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External Validation with Survival Analysis

To validate our findings, we performed a Kaplan-Meier Survival
Analysis on an independent cohort of 178 ER+ breast cancer patients
treated with tamoxifen...

▶ The analysis shows a stat.
significant difference in
RFS between patients with
↑ vs. ↓ expression of our
signature (p-value = 0.032).

▶ Patients with high
expression of the signature
had a 2.67 times greater
risk of relapse (Hazard
Ratio = 2.67).
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Associated Biological Pathways

An enrichment analysis suggests the identified genes are
involved in biological pathways known to be critical in breast
cancer progression.
▶ The Human ECM-receptor interaction pathway, which

plays a critical role in cancer progression and survival.
▶ The Interleukin-7 (IL-7) signaling pathway, which is known

to be involved in promoting breast cancer cell proliferation.

Limitation: Due to the small size of our gene signature, it is
difficult to extract definitive conclusions from pathway analysis.
Further biological investigation is required...
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Conclusions & Future Work

Key Findings & Contributions:

1. Data augmentation significantly improved performance across all
models.

2. BNNs achieved near-optimal results.

3. Identified 10 key biomarkers contributing to tamoxifen resistance.
(CISH, BCAS1, FRAS1, FIRRE, MGAT5B, HERC1, SYNPO2L, TMC7, VTN, INSIG2)

4. Cell-line priors did not yield expected improvements.

5. pyHaiCS library for HMC-based Bayesian inference.
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Conclusions & Future Work
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Questions?
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