Development of a Bayesian Approach to Modeling Tamoxifen Resistance in Breast Cancer Cells Through Adaptive Hamiltonian Monte-Carlo Posterior Sampling

Miguel Fernández de Retana

Degree in Data Science & Artificial Intelligence

Collaboration Acknowledgment

This project has been conducted as a collaborative effort between the Basque Center for Applied Mathematics (BCAM) & the Cancer Heterogeneity Lab at CIC bioGUNE.

Their combined support & resources have contributed significantly to the development and completion of the **project**.

Outline

Introduction

Objectives & Available Data

Ethical Considerations of the Project

Processing Pipeline: Multi-Source Data Integration

Development of Prognostic Models

Identification of Potential Genetic Biomarkers

Conclusions & Future Work

Breast Cancer: A Global Health Challenge

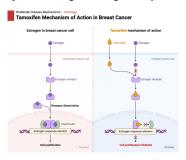
- Breast cancer (BC) is the most diagnosed cancer among women globally, and accounts for almost 15% of all female cancer-related deaths.
- The most widely accepted classification of BC subtypes consists of the following major molecular subtypes [1]:

Molecular Subtypes	Luminal A	Luminal B		HER2+	TN
		(HER2-)	(HER2+)	HER2+	
Biomarkers	ER+ PR+ HER2- Ki67low	ER+ PR- HER2- Ki67high	ER+ PR-/+ HER2+ Ki67low/high	ER- PR- HER2+ Ki67high	ER- PR- HER2- Ki67high
Frequency of Cases (%)	40-50	20-30		15-20	10-20
Histological Grade	Well Differentiated (Grade I)	Moderately Differentiated (Grade II)		Little Differentiated (Grade III)	Little Differentiate (Grade III)
Prognosis	Good	Intermediate		Poor	Poor
Response to Therapies	Endocrine	Endocrine Chemotherapy	Endocrine Chemotherapy Target Therapy	Target Therapy Chemotherapy	Chemotherapy PARP Inhibitors

Figure: Molecular Classification of Breast Cancer Cells

Breast Cancer: A Global Health Challenge

- ► Among these, Estrogen Receptor-Positive (ER+) is the most prevalent subtype, accounting for ≈ 70-80% of cases...
- ▶ ... but also offers the best treatment path → Endocrine therapy, particularly w/ Tamoxifen.
- ▶ By binding to ERs, **Tamoxifen** acts as an antagonist in breast tissue, effectively blocking estrogen's **proliferative effects**.



The Challenge of Tamoxifen Resistance

- ► The development of tamoxifen has shown to reduce recurrence by ~50% and mortality by ~30% after a standard 5-year treatment following surgery [2].
- ► However, despite the success of tamoxifen, a significant nº of patients develop resistance to the drug → estimated to be between 30-50% [1]
- Early identification of resistant cases avoids wasting a critical
 5-year therapy window.

Our Approach: A Bayesian Framework

- ► We propose a **Bayesian** modeling framework to analyze the complex mechanisms driving **tamoxifen resistance**...
- ... By integrating RNA sequencing data from both cell-lines and publicly available patient data.
- Our approach allows for the incorporation of biologically motivated prior expert knowledge, as well as SOTA developments in computational statistics.

Outline

Introduction

Objectives & Available Data

Ethical Considerations of the Project

Processing Pipeline: Multi-Source Data Integration

Development of Prognostic Models

Identification of Potential Genetic Biomarkers

Conclusions & Future Work

Objectives

Our Goal...

To analyze this biological phenomenon responsible for the development of **resistance to tamoxifen** in ER⁺ breast cancer cells by integrating **cell-patient data**.

Objectives

Our Goal...

To analyze this biological phenomenon responsible for the development of **resistance to tamoxifen** in ER⁺ breast cancer cells by integrating **cell-patient data**.

More concretely:

- ➤ To identify potential genetic biomarkers associated with tamoxifen resistance in ER+ breast cancer cells.
- To develop robust and interpretable prognostic models for predicting treatment outcomes (including integrated data).
- To develop pyHaiCS, an open-source Python library for computational statistics based on Hamiltonian-inspired Monte-Carlo methods.

Available Data

The following data has been provided by the lab at CIC bioGUNE:

- 1. RNA-seq data from MCF7 **cell-lines** (both resistant & control have been independently **sequenced three times**).
- 2. RNA-seq data from **patients** who have been classified as **resistant** or as **responsive** to tamoxifen treatment. This data comes from **public** cancer repositories (i.e., TCGA).

Outline

Introduction

Objectives & Available Data

Ethical Considerations of the Project

Processing Pipeline: Multi-Source Data Integration

Development of Prognostic Models

Identification of Potential Genetic Biomarkers

Conclusions & Future Work

Ethical Considerations of the Project

- Our work has direct implications for patient care and clinical decision-making...
- ➤ This ethical responsibility is **not** limited to the **technical** aspects of our work, but also extends to the **social** and **environmental** dimensions of our research.
- We must consider the potential impact of our work on vulnerable populations, ensuring equitable access to healthcare technologies, and promoting safety and sustainability.

Ethical Considerations of the Project

This work adheres to the **ethical obligations** of service to society, health, and public welfare.

Guiding Principles

- ▶ Beneficence: Aim to improve patient outcomes by predicting resistance to long ineffective treatments.
- Justice: Promote equity through the pyHaiCS library, democratizing access to advanced methods.
- Autonomy & Responsibility: Promote accountability for the technical validity of our models. We respect patient autonomy by ensuring our approach supports informed decision-making.

Ethical Considerations of the Project

This work adheres to the **ethical obligations** of service to society, health, and public welfare.

Ethical Practice

- Data Privacy: All patient data is fully anonymized in compliance with GDPR, maintaining no connection between genetic profiles and patient identities.
- ▶ Open Science: Development of pyHaiCS promotes transparency, and collaborative improvement.
- Transparency: Maintaining interpretable models and documentation to support informed clinical decision-making.

Outline

Introduction

Objectives & Available Data

Ethical Considerations of the Project

Processing Pipeline: Multi-Source Data Integration

Development of Prognostic Models

Identification of Potential Genetic Biomarkers

Conclusions & Future Work

Our core challenge is to bridge the gap between controlled in-vitro experiments and complex in-vivo patient realities...

- Our core challenge is to bridge the gap between controlled in-vitro experiments and complex in-vivo patient realities...
- We hypothesize that genes showing concordant expression changes in both resistant cells and resistant patients are the most robust candidates for predicting resistance.

- Our core challenge is to bridge the gap between controlled in-vitro experiments and complex in-vivo patient realities...
- We hypothesize that genes showing concordant expression changes in both resistant cells and resistant patients are the most robust candidates for predicting resistance.

Data Integration Logic Cell-Line Data + Patient Data (MCF7 CTRL vs. TamR) (Responsive vs. Resistant) ↓ Refined list of high-confidence biomarkers

We follow a **multi-step pipeline** to distill the most relevant genetic biomarkers from tens of thousands of possibilities:

 Filter out low-expression genes (count < 30) and apply Relative Log Expression (RLE) normalization to make counts comparable across all samples.

We follow a **multi-step pipeline** to distill the most relevant genetic biomarkers from tens of thousands of possibilities:

- Filter out low-expression genes (count < 30) and apply Relative Log Expression (RLE) normalization to make counts comparable across all samples.
- Perform Differential Expression Analysis (DEA) independently on both cell-line and patient datasets to identify statistically differentially expressed genes in resistant vs. sensitive groups.

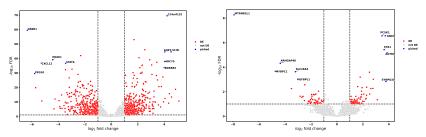
We follow a **multi-step pipeline** to distill the most relevant genetic biomarkers from tens of thousands of possibilities:

- Filter out low-expression genes (count < 30) and apply Relative Log Expression (RLE) normalization to make counts comparable across all samples.
- Perform Differential Expression Analysis (DEA) independently on both cell-line and patient datasets to identify statistically differentially expressed genes in resistant vs. sensitive groups.
- 3. Apply a **statistical filter** to keep only the **most significant** genes: $(|\log_2 FC| > 0.5)$ and (FDR < 0.1).

We follow a **multi-step pipeline** to distill the most relevant genetic biomarkers from tens of thousands of possibilities:

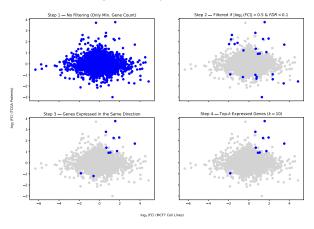
- Filter out low-expression genes (count < 30) and apply Relative Log Expression (RLE) normalization to make counts comparable across all samples.
- Perform Differential Expression Analysis (DEA) independently on both cell-line and patient datasets to identify statistically differentially expressed genes in resistant vs. sensitive groups.
- 3. Apply a **statistical filter** to keep only the **most significant** genes: $(|\log_2 FC| > 0.5)$ and (FDR < 0.1).
- Integrate the two filtered lists by selecting only genes that are differentially expressed in the same direction (i.e., over-expressed or under-expressed in both cases).

This rigorous filtering process drastically reduces the feature space from over 36,000 genes to just **10 candidate biomarkers**.



(Left: MCF7 Cell-Lines, Right: TCGA Patients)

This rigorous filtering process drastically reduces the feature space from over 36,000 genes to just **10 candidate biomarkers**.



Outline

Introduction

Objectives & Available Data

Ethical Considerations of the Project

Processing Pipeline: Multi-Source Data Integration

Development of Prognostic Models

Identification of Potential Genetic Biomarkers

Conclusions & Future Work

In Bayesian inference, our goal is to understand the **posterior distribution** which describes our belief about the model parameters after seeing the data:

$$\underbrace{\overbrace{p(\theta|x)}^{\text{Posterior}}}_{\text{D}(\theta|x)} = \underbrace{\underbrace{\overbrace{p(\theta)}^{\text{Prior Likelihood}}_{\text{D}(x|\theta)}}_{\text{Marginal Likelihood}} \tag{1}$$

► This posterior is often a **complex**, high-dimensional distribution that we can't solve **analytically**.

In Bayesian inference, our goal is to understand the **posterior distribution** which describes our belief about the model parameters after seeing the data:

$$\underbrace{\overbrace{p(\theta|x)}^{\text{Posterior}}}_{\text{Marginal Likelihood}} = \underbrace{\overbrace{p(x)}^{\text{Prior Likelihood}}}_{\substack{p(x)\\\text{Marginal Likelihood}}} (2)$$

Actually, given a **new observation** \tilde{x} , predictions can be made by using the *posterior predictive distribution* as:

$$p(\tilde{x}|x) = \int p(\tilde{x}, \theta|x) d\theta = \int p(\tilde{x}|\theta)p(\theta|x) d\theta \tag{3}$$

Since the integral has no analytical solution, we must **draw samples** to approximate it.

- Standard MCMC methods use inefficient random walks to explore the probability space, which converge poorly in high dimensions.
- ► Hamiltonian Monte-Carlo (HMC) uses a much smarter approach inspired by classical mechanics to propose new samples.
- The core idea is to augment our parameters, or the **position** (θ) , with an auxiliary **momentum** variable (p). This creates a physical system whose total energy is described by the **Hamiltonian**:

$$H(\theta, p) = K(p) + U(\theta) = \frac{1}{2}p^{T}M^{-1}p + U(\theta)$$
 (4)

Instead of a random step, we simulate this system's evolution through the numerical integration of the Hamiltonian dynamics:

$$\dot{\theta} = H_p(\theta, p) = M^{-1}p,$$
 $\dot{p} = -H_\theta(\theta, p) = -U_\theta(\theta)$ (5)

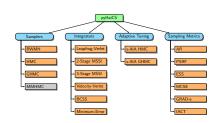
- ▶ Where the Hamiltonian potential $U(\theta)$ is related to the target distribution by: $U(\theta) = -\log \pi(\theta) + C$.
- ▶ In practice, the integration of the target dynamics is carried out by combining the following solution flows:

$$\varphi_t^{A}(\theta, p) = (\theta + tM^{-1}p, p), \qquad \varphi_t^{B}(\theta, p) = (\theta, p - tU_{\theta}(\theta))$$
 (6)

Combining these flows gives rise to various **numerical integrators**, and further enhancements lead to different **sampling algorithms** like **HMC**, **GHMC**, etc.

pyHaiCS: A New Tool for Bayesian Inference

- Introducing pyHaiCS: a new Python library for Hamiltonian Monte-Carlo (HMC) methods.
- Built on JAX for high performance: Just-In-Time (JIT) compilation, automatic differentiation, and hardware acceleration (CPU/GPU/TPU).
- Implements a wide range of SOTA samplers, numerical integrators, and adaptive tuning algorithms.
- Designed to be user-friendly and easily integrable with existing scientific Python workflows.



The Challenge of Data Imbalance

- ► The patient dataset is highly imbalanced: only ~30% of patients are resistant to tamoxifen.
- In this clinical context, failing to identify a resistant patient is far more critical than misclassifying a sensitive one.
- ► Therefore, standard metrics like accuracy are misleading. We focus on Recall (Sensitivity) and the Matthews Corr. Coeff. (MCC).

The Challenge of Data Imbalance

- ► The patient dataset is highly imbalanced: only ~30% of patients are resistant to tamoxifen.
- ► In this clinical context, failing to identify a resistant patient is far more critical than misclassifying a sensitive one.
- ► Therefore, standard metrics like accuracy are misleading. We focus on Recall (Sensitivity) and the Matthews Corr. Coeff. (MCC).

Solution: Data Augmentation with SMOTE

We use the **Synthetic Minority Oversampling Technique** (**SMOTE**) to balance the dataset by generating synthetic samples for the minority (resistant) class. All models were trained and evaluated on both the original and augmented datasets to measure the impact.

Development of Prognostic Models

We developed a wide range of models to predict tamoxifen resistance:

Bayesian Models:

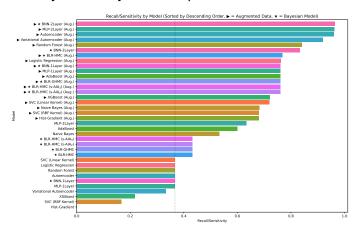
- **Bayesian Logistic Regression (BLR) w/ HMC:** Priors for gene coefficients were set using **cell-line data**: $\theta_i \sim \mathcal{N}(\log_2 FC_i, 2.5^2)$.
- Bayesian Neural Networks (BNN): Advanced NNs that treat weights as probability distributions.

Baseline Models:

- ▶ Shallow Models: Logistic Regression, Support Vector Classifiers.
- ► Ensemble Methods: Random Forest, XGBoost, AdaBoost.
- ▶ **Neural Networks:** MLPs, Autoencoders, Variational Autoencoders.

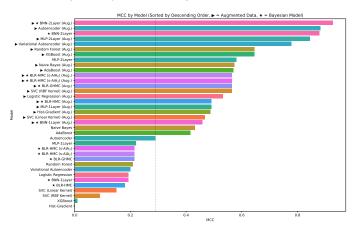
Development of Prognostic Models

Data augmentation with SMOTE **drastically improved** the models' ability to identify resistant patients...



Development of Prognostic Models

Bayesian and **deep learning** models showed the best overall performance, especially on the augmented dataset.



Development of Prognostic Models

Key Takeaways:

- Data augmentation (SMOTE) improved all models' performance Synthetic samples may not fully represent the underlying biological variability...
- On the sensitivity of models to class imbalance...
- (Bayesian) Neural Networks achieved best performance (BNN-2Layer: Recall=0.964, MCC=0.927)
- Still, simple shallow models (Logistic Regression/RF) remained competitive when dealing with the augmented dataset.
- ► Significant improvements over **previous work**... (Recall of > 0.9 vs. 0.367)

Limitations:

- ightharpoonup Small cohort size (n = 37 patients), even after augmentation
- ► RNA-seq integration showed limited impact (BLR-HMC MCC=0.565 vs. BNN-2Layer MCC=0.927, BLR-HMC vs Vanilla LR)

Outline

Introduction

Objectives & Available Data

Ethical Considerations of the Project

Processing Pipeline: Multi-Source Data Integration

Development of Prognostic Models

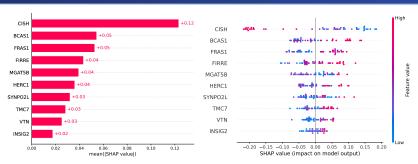
Identification of Potential Genetic Biomarkers

Conclusions & Future Work

Explaining the "Black Box": SHAP Values

- To understand why our model makes certain predictions, we use SHAP (SHapley Additive exPlanations) values.
- SHAP is a method from cooperative game theory that explains the output of any machine learning model by computing the contribution of each feature (gene) to the prediction.
- It allows us to identify the most important genes that our models use to predict tamoxifen resistance.
- Important Note: SHAP values show correlation, not causation. They reveal which genes are most predictive for the model, but do not prove a direct causal role in resistance.

Potential Genetic Biomarkers (Global)



- ► Low expression of CISH (blue dots on the right) is strongly associated with a higher probability of resistance.
- ▶ CISH has the greatest discerning power in the model's predictions.
- Conversely, high expression of genes like BCAS1 and FRAS1 (red dots on the right) is associated with higher resistance.

Potential Genetic Biomarkers (Local)

We can also break down the predictions for a single patient...

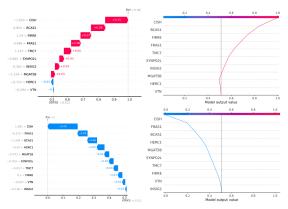


Figure 5.6: Local Gene Contribution – Per-Gene Contribution for Two Sample Patients (Above: Resistant, Below: Favorable Treatment) (Left: Waterfall Contribution Plots, Right: Decision Contribution Plots)

External Validation with Survival Analysis

To validate our findings, we performed a **Kaplan-Meier Survival Analysis** on an **independent** cohort of **178** ER⁺ breast cancer patients treated with tamoxifen...

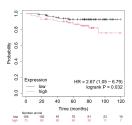


Figure 5.7: Kaplan-Meier Survival Analysis for the Identified Genes in ER+ Breast Cancer Patients – Relapse-Free Survival (RFS) Probability Over Time

- The analysis shows a stat. significant difference in RFS between patients with ↑ vs. ↓ expression of our signature (p-value = 0.032).
- Patients with high expression of the signature had a 2.67 times greater risk of relapse (Hazard Ratio = 2.67).

Associated Biological Pathways

An **enrichment analysis** suggests the identified genes are involved in biological pathways known to be critical in breast cancer progression.

- ► The Human ECM-receptor interaction pathway, which plays a critical role in cancer progression and survival.
- ► The Interleukin-7 (IL-7) signaling pathway, which is known to be involved in promoting breast cancer cell proliferation.

Limitation: Due to the small size of our gene signature, it is difficult to extract definitive conclusions from pathway analysis. Further biological investigation is required...

Outline

Introduction

Objectives & Available Data

Ethical Considerations of the Project

Processing Pipeline: Multi-Source Data Integration

Development of Prognostic Models

Identification of Potential Genetic Biomarkers

Conclusions & Future Work

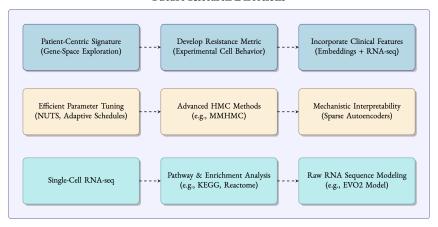
Conclusions & Future Work

Key Findings & Contributions:

- Data augmentation significantly improved performance across all models.
- 2. BNNs achieved near-optimal results.
- 3. Identified 10 key biomarkers contributing to tamoxifen resistance. (CISH, BCAS1, FRAS1, FIRRE, MGAT5B, HERC1, SYNPO2L, TMC7, VTN, INSIG2)
- 4. Cell-line priors did not yield expected improvements.
- 5. **pyHaiCS** library for HMC-based Bayesian inference.

Conclusions & Future Work

Future Research Directions



Questions?

Bibliography I

Therese Sørlie, Charles M Perou, Robert Tibshirani, Turid Aas, Stephanie Geisler, Hilde Johnsen, Trevor Hastie, Michael B Eisen, Matt Van De Rijn, Stefanie S Jeffrey, et al.

Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications.

Proceedings of the National Academy of Sciences, 98(19):10869–10874, 2001.

Early Breast Cancer Trialists' Collaborative Group et al.

Relevance of breast cancer hormone receptors and other factors to the efficacy of adjuvant tamoxifen: patient-level meta-analysis of randomised trials.

The lancet, 378(9793):771–784, 2011.