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Abstract. This study extends previous multimodal creativity assess-
ment by employing CLIP (Contrastive Language–Image Pre-training) to
generate unified embeddings of drawings and their accompanying titles.
A dataset of 486 sketches—produced by 53 participants before and after
intracranial stimulation—was annotated for originality (O), flexibility
(FLE), elaboration (E), and title creativity (T) by expert psychologists.
Eight classifiers and four regressors were evaluated on each target, com-
paring raw versus PCA-reduced CLIP features and applying SMOTE to
balance the binary tasks (O, T). A Random Forest trained on raw CLIP
embeddings achieved the highest AUC for originality (0.919), while an
MLP regressor marginally improved elaboration R2 (0.489) over image-
only baselines. Text-based models remained strongest for title creativity,
yet CLIP-based fusion delivered robust performance across all four di-
mensions. An accompanying Streamlit application allows users to com-
plete a drawing in-browser and receive instantaneous creativity scores,
demonstrating both technical advancement and practical applicability
for educational and clinical settings.

Keywords: Machine Learning · Creativity Assessment · Artistic Ex-
pression · Text and Image Analysis

1 Introduction

The assessment of creativity has undergone significant advances through the
integration of artificial intelligence (AI) and machine learning (ML), enabling
more objective, scalable, and nuanced evaluation methods. Traditionally, creative
tasks such as the Alternate Uses Task (AUT) or drawing-based assessments like
the TCT-DP and Draw-A-Person Test have relied on human judgment, raising
concerns about consistency, efficiency, and subjectivity [2,4,23].

With AI, it is now possible to quantify key dimensions of creativity—such as
originality, flexibility, and elaboration—with greater precision. Tools like SemDis
have automated the scoring of verbal tasks, while convolutional neural networks
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(CNNs) have successfully replicated expert evaluations in drawing-based assess-
ments [9]. These methods reduce both the time required and inter-rater variabil-
ity.

More sophisticated models, such as the DeepCreativity framework [12], use
deep learning techniques to assess creative output without predefined attributes.
In addition, multimodal approaches that combine visual and textual data—such
as drawing titles and descriptions—capture subtleties that single-modality mod-
els may miss, particularly in evaluating originality and flexibility [1,3,28].

AI has also contributed to a deeper understanding of the creative process.
Recent studies have linked analyses of functional connectomes to traits like psy-
chological resilience, showing the potential of AI to uncover relationships between
creative output and underlying cognitive characteristics [25]. This highlights AI’s
role not only as an evaluative tool but also as a means to enhance theoretical
understanding of creativity.

In emotional and therapeutic contexts, AI has shown promise in analyzing
affective content in drawings through sentiment analysis techniques [10,16,21].
These tools help clinicians monitor emotional and cognitive changes over time
and detect deviations from normative profiles [18,22,29,11,24]. Furthermore, cur-
rent models offer insights into cognitive styles and personality traits through
drawing-based tasks [6,8,13], reinforcing AI’s potential for comprehensive cre-
ativity assessment. Building on this progress, the present work introduces a
multimodal model that integrates visual and textual data for a more complete
and human-aligned evaluation of creativity [14].

2 Methodology

2.1 Data

We use the multimodal dataset introduced in Pikatza-Huerga et al. (2025), con-
sisting of 486 samples of scanned drawings with accompanying Spanish titles
[19]. These drawings were collected in a study of intracranial stimulation effects
on creativity: 53 participants produced one drawing before stimulation (pre-
stimulation phase) and one drawing after stimulation (post-stimulation phase).
For each drawing, participants also provided a short title or description reflecting
their interpretation of the image.

The primary aim of the original study was to assess whether intracranial
stimulation influences drawing originality. The resulting dataset includes both
pre- and post-stimulation drawings and titles, serving as the basis for all our
experiments. Each sample comprises:

– IMAGE: A 224× 224 px scanned drawing, normalized to [0, 1].
– TEXT: The Spanish title supplied by the participant, lowercased, punctuation-

stripped, and tokenized.
– O (Originality): Binary label (0 = not original, 1 = original) assigned by

expert psychologists.
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– FLE (Flexibility): Integer category count of distinct themes (e.g. people,
landscapes), normalized to reflect thematic flexibility.

– E (Elaboration): Numeric score indicating the level of detail and complex-
ity, as rated by experts.

– T (Title Creativity): Binary label (0 = not creative, 1 = creative) for the
title, assigned by experts.

Figure 1 shows an example of a drawing line that participants were given
to complete (Figure 1a) and the completed drawing (Figure 1b) with the title
given.

(a) Base canvas for drawing (b) Completed drawing

Fig. 1: Scanned drawings

2.2 Participants

Fifty-three participants (49.1% male, 50.9% female; ages 10–60) provided draw-
ings before and after intracranial stimulation. Demographics (mother tongue,
education, sleep hours, stimulant/tobacco use) were recorded as in previous re-
search [19].

2.3 Original Multimodal Models

In previous research, visual embeddings were obtained via CNN encoders—
ResNet50, InceptionV3, EfficientNetB0, and Xception—and textual embeddings
via BETO, FastText, or a Keras Embedding layer. These embeddings were con-
catenated and used to train classical machine-learning models: classifiers for
originality (O), flexibility (FLE), and title creativity (T), as well as regressors
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for elaboration (E). Performance was evaluated using ROC AUC, accuracy, re-
call, precision, specificity, and F1 score for classification tasks, and MAE, RMSE,
and R2 for regression tasks [19].

Building on this foundation, the original multimodal methodology included:

1. Single-modality baselines: Separate training with image-only and text-
only embeddings to assess each modality’s independent predictive power.

2. Feature fusion: Concatenation of the penultimate-layer embeddings from
both modalities into a joint representation before prediction.

3. Hyperparameter optimization: Application of grid search (for smaller
models) or randomized search (for larger parameter spaces) with k-fold cross-
validation to tune key parameters such as tree depth, number of neurons,
regularization strength, and learning rates.

Image-Based Models

– ResNet50 [15]: A 50-layer deep residual network mitigating vanishing gra-
dients via identity skip connections.

– InceptionV3 [26]: Employs factorized convolutions and dimensionality re-
ductions to improve computational efficiency.

– EfficientNetB0 [27]: Utilizes compound scaling to balance network depth,
width, and resolution for optimal accuracy-efficiency trade-offs.

– Xception [7]: Leverages depthwise separable convolutions for parameter-
efficient feature extraction and improved classification performance.

Text Embedding Models

– BETO [5]: A Spanish-language BERT model providing contextualized word
embeddings tailored to Spanish text.

– FastText [17]: Generates subword-aware embeddings that capture morpho-
logical information and handle out-of-vocabulary tokens.

– Keras Embedding layer: Learns dense word vectors end-to-end within the
classification pipeline, offering a lightweight and efficient text representation.

This diverse selection of encoders ensures a comprehensive evaluation of how
visual and textual modalities contribute—independently and jointly—to auto-
mated creativity assessment.

2.4 New CLIP-Based Experiment

To enhance joint image–text representation, we employ OpenAI’s CLIP (ViT-
B/32) [20] and systematically evaluate both PCA vs. no–PCA and SMOTE-
balancing only on the binary tasks (O and T), while testing all classifiers/regressors
on every target:

1. Embedding extraction:
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– Preprocess images (224×224 px, normalized) and titles (lowercased, to-
kenized).

– Pass through CLIP’s vision and text encoders to obtain 512-D vectors.
– L2–normalize both vectors.

2. Feature fusion:
– Concatenate image and text vectors into a 1,024-D feature.
– Optionally apply PCA to reduce to 256 dimensions (95% explained vari-

ance) via PCA(n_components=256) or skip PCA (leaving 1,024-D).
3. Modeling and balancing:

– Originality (O) and Title originality (T) (binary):
• Apply SMOTE to training folds to correct class imbalance.
• Evaluate all classifiers (MLP, LogisticRegression, RandomForest, SVC,

KNN, GaussianNB, DecisionTree, XGB) with and without PCA.
– Flexibility (FLE) (multiclass):

• No SMOTE; filter out classes with < 2 samples.
• Evaluate all classifiers with and without PCA; optimize macro ROC

AUC.
– Elaboration (E) (regression):

• No SMOTE.
• Test all regressors (MLPRegressor, RandomForestRegressor, Linear-

Regression, XGBRegressor) with and without PCA; optimize nega-
tive MSE.

4. Hyperparameter tuning: For each model, perform RandomizedSearchCV
(10 iterations, 3–fold CV) on either ROC AUC (classification) or negative
MSE (regression).

2.5 Training and Evaluation

For each target dimension, data are split 80/20 with stratification to prevent par-
ticipant overlap using train_test_split. Classification metrics include ROC
AUC, accuracy, precision, recall, specificity (binary only), and F1 score; regres-
sion metrics include MSE, RMSE, and R2. Results are exported to CSV for
comparison against previous benchmarks.

2.6 Web Application

To demonstrate the practical applicability of the proposed models, an interactive
web application was developed using Streamlit. The application enables users to
complete a predefined base drawing on a digital canvas and submit a corre-
sponding title. Upon submission, the drawing-title pair is evaluated in real time
across four creativity dimensions: elaboration (E), flexibility (FLE), originality
(O), and title creativity (T).

The application integrates several pretrained and fine-tuned models used in
the study. Elaboration is predicted using a convolutional neural network trained
on expert-labeled data. Flexibility scores are derived from FastText embeddings
processed by a multiclass classifier. Title creativity is assessed using a Spanish
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BERT model (BETO), while a CLIP-based pipeline combining image and text
embeddings is used to compute the overall originality score. The CLIP embed-
dings are passed to a Random Forest classifier trained to distinguish original
versus non-original submissions.

To promote user engagement and creative diversity, the system randomly
selects a base drawing from a pool of initial sketches each time the user initiates a
new session via a “Try Again” button. However, the drawing remains fixed during
a session to preserve evaluation consistency. The final evaluation output includes
a composite visualization of the user’s completed drawing and the corresponding
creativity metrics.

3 Results

This section compares the performance of models trained in the new CLIP-based
experiment with those from previous research [19], across all four creativity-
related prediction tasks: originality (O), elaboration (E), flexibility (FLE), and
title creativity (T). For each task, we report the best-performing models in terms
of ROC AUC for classification and R2 for regression.

3.1 Predicting Originality (O)

In previous work, the best AUC was achieved with a combination of FastText
and InceptionV3 (AUC = 0.85). In our new experiments, the Random Forest
classifier trained on CLIP embeddings with no PCA outperformed all previous
models, achieving an AUC of 0.92 and an accuracy of 0.83.

3.2 Predicting Elaboration (E)

In previous work, InceptionV3 achieved the best regression performance (R2 =
0.48). In the new CLIP-based experiment, the MLPRegressor performed best
with R2 = 0.49, showing a slight improvement.

3.3 Predicting Flexibility (FLE)

The highest AUC in the original study was obtained using FastText alone (AUC
= 0.91). In the new experiment, the best AUC was 0.87, obtained by an MLP
classifier on CLIP embeddings. Although this represents a small drop in AUC,
it came with improved balance across precision, recall, and F1.

3.4 Predicting Title Creativity (T)

As expected, text-only models performed best in predicting T. In previous re-
search, BETO achieved an AUC of 0.91. In our new experiments, the best AUC
was 0.84, obtained using a Random Forest classifier with CLIP text embeddings
and PCA. Though slightly lower than BETO, the performance remains compet-
itive.
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Table 1: Performance for Originality (O)
Classifier AUC Accuracy Precision Recall F1 Specificity

RandomForest 0.920 0.827 0.833 0.827 0.822 0.931
SVC + PCA 0.920 0.827 0.826 0.827 0.826 0.862
SVC 0.903 0.827 0.827 0.827 0.824 0.897
LogisticRegression + PCA 0.889 0.796 0.801 0.796 0.797 0.793
LogisticRegression 0.888 0.796 0.798 0.796 0.797 0.810
MLPClassifier + PCA 0.879 0.816 0.818 0.816 0.817 0.828
RandomForest + PCA 0.862 0.776 0.774 0.776 0.772 0.862
MLPClassifier 0.861 0.806 0.807 0.806 0.807 0.828
KNeighborsClassifier 0.858 0.745 0.775 0.745 0.747 0.672
KNeighborsClassifier + PCA 0.853 0.745 0.752 0.745 0.747 0.741
GaussianNB + PCA 0.844 0.765 0.764 0.765 0.765 0.810
XGBClassifier 0.855 0.735 0.732 0.735 0.731 0.828
XGBClassifier + PCA 0.810 0.735 0.735 0.735 0.735 0.776
GaussianNB 0.793 0.735 0.740 0.735 0.736 0.741
DecisionTreeClassifier + PCA 0.686 0.684 0.696 0.684 0.686 0.672
DecisionTreeClassifier 0.602 0.653 0.647 0.653 0.648 0.759

Baseline (prev.) 0.850 0.800 0.420 0.710 0.530 0.890

Table 2: Performance for Elaboration (E)
Regressor MSE RMSE R2

MLPRegressor 2.102 1.450 0.489
RandomForestRegressor 2.393 1.547 0.418
XGBRegressor 2.495 1.579 0.393
LinearRegression 6.162 2.482 -0.498

Baseline (prev.) 2.820 1.300 0.480

3.5 Web application

The web application was evaluated in terms of its ability to replicate the scoring
patterns observed in offline model testing. The system produced reliable and
interpretable scores aligned with expert-labeled ground truth across all four di-
mensions. Visual elaboration scores increased proportionally with the amount of
detail added to the base sketch. BETO-based evaluation effectively distinguished
generic from inventive titles, while FastText-based classification provided coher-
ent thematic interpretations for flexibility.

The CLIP-based originality classifier successfully identified novel and unex-
pected image-text combinations, with output probabilities offering fine-grained
insight into the originality dimension. Randomized base drawings led to a wide
range of user-generated responses, illustrating the robustness and generalizabil-
ity of the evaluation framework.
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Table 3: Performance for Flexibility (FLE)
Classifier AUC Accuracy Precision Recall F1

MLPClassifier 0.874 0.558 0.551 0.558 0.537
MLPClassifier + PCA 0.857 0.568 0.541 0.568 0.532
RandomForestClassifier 0.842 0.537 0.552 0.537 0.487
RandomForestClassifier + PCA 0.837 0.568 0.570 0.568 0.515
LogisticRegression 0.834 0.495 0.509 0.495 0.430
LogisticRegression + PCA 0.833 0.495 0.513 0.495 0.433
GaussianNB + PCA 0.812 0.526 0.542 0.526 0.496
GaussianNB 0.791 0.484 0.507 0.484 0.441
SVC + PCA 0.768 0.526 0.512 0.526 0.468
SVC 0.762 0.526 0.512 0.526 0.468
KNeighborsClassifier + PCA 0.728 0.463 0.507 0.463 0.427
KNeighborsClassifier 0.719 0.453 0.499 0.453 0.413

Baseline (prev.) 0.910 0.560 0.800 0.370 0.660

This implementation confirms the potential of integrated, multimodal models
for real-time creativity assessment. The application serves as a proof-of-concept
for deploying machine learning-based evaluators in educational and clinical set-
tings, enabling scalable and standardized creativity feedback.

To facilitate reproducibility and further development by the research com-
munity, the source code of the application is available on GitHub.

4 Discussion

The results demonstrate that leveraging CLIP embeddings for multimodal fusion
yields notable improvements in certain creativity dimensions, while maintaining
competitive performance in others compared to previous image-only and text-
only baselines.

In the case of originality (O), the Random Forest classifier trained on raw
CLIP embeddings achieved the highest AUC of 0.919, substantially exceeding the
best baseline AUC of 0.850 reported for the FastText + InceptionV3 combination
[19]. Other CLIP-based classifiers, such as SVC and MLP, also consistently out-
performed prior benchmarks, with specificity values reaching up to 0.931 and F1
scores as high as 0.826. These results suggest that the joint image–text represen-
tation offered by CLIP is highly effective in capturing the originality dimension
of creative work.

For elaboration (E), regression results showed that the MLP model trained
on CLIP embeddings achieved an R2 score of 0.489 and an RMSE of 1.450.
While the R2 represents a modest improvement over the best image-only baseline
(R2 = 0.480), the RMSE was slightly higher than that of the InceptionV3-based
model (RMSE = 1.300). This indicates that although CLIP fusion improves ex-
plained variance, it may introduce additional variability that slightly affects error

https://github.com/apikatza/CreativityAssessmentApp
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Table 4: Performance for Title Creativity (T)
Classifier AUC Accuracy Precision Recall F1 Specificity

RandomForestClassifier + PCA 0.838 0.786 0.794 0.786 0.788 0.787
RandomForestClassifier 0.830 0.684 0.675 0.684 0.676 0.803
XGBClassifier + PCA 0.829 0.704 0.696 0.704 0.694 0.836
SVC + PCA 0.799 0.765 0.762 0.765 0.761 0.853
LogisticRegression 0.786 0.735 0.735 0.735 0.735 0.787
LogisticRegression + PCA 0.785 0.714 0.712 0.714 0.713 0.787
MLPClassifier + PCA 0.786 0.776 0.773 0.776 0.771 0.869
MLPClassifier 0.785 0.786 0.784 0.786 0.780 0.885
XGBClassifier 0.807 0.684 0.675 0.684 0.676 0.803
DecisionTreeClassifier 0.715 0.735 0.731 0.735 0.731 0.820
KNeighborsClassifier + PCA 0.748 0.694 0.706 0.694 0.697 0.705
KNeighborsClassifier 0.712 0.673 0.727 0.673 0.677 0.590
GaussianNB 0.741 0.653 0.653 0.653 0.653 0.721
GaussianNB + PCA 0.630 0.592 0.601 0.592 0.595 0.639

Baseline (prev.) 0.910 0.900 1.000 0.800 0.900 0.740

magnitude. Nonetheless, the model remains a strong alternative for elaboration
prediction.

In terms of flexibility (FLE), the MLP classifier using CLIP embeddings
obtained an AUC of 0.874, compared to the 0.910 achieved by the FastText-only
model in previous work. Although the CLIP-based models did not surpass the
text-only baseline in AUC, they maintained competitive accuracy (0.558) and F1
score (0.537), showing the capacity of the fused embeddings to capture thematic
variation without relying solely on textual cues.

Regarding title creativity (T), title classification remained a task where text-
specific models excelled. The best BETO-based classifier achieved an AUC of
0.910 and F1 score of 0.900, whereas the top CLIP-based model (Random Forest
with PCA) reached an AUC of 0.838 and F1 of 0.788. This suggests that, for
short textual content like titles, specialized language models continue to provide
the most accurate predictions, though visual context still contributes meaningful
information.

These findings validate CLIP as a powerful tool for creativity assessment, par-
ticularly in tasks requiring integration of visual and textual semantics. The ob-
served improvements in originality and elaboration predictions highlight CLIP’s
strength in capturing abstract creative qualities. While text-only models retain
an edge in title-related tasks, CLIP provides a unified framework suitable for
general multimodal prediction. The successful integration into an interactive
Streamlit application further demonstrates its practical utility for real-time cre-
ativity evaluation in both educational and clinical settings.
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4.1 Limitations

While the proposed CLIP-based framework shows promising results, several lim-
itations should be noted.

First, the dataset and language models are based entirely on Spanish-language
text. Although BETO and FastText are trained specifically for Spanish, CLIP
was pretrained primarily on English data. This mismatch may affect the align-
ment between image and text modalities in Spanish and could explain the rela-
tively lower performance of CLIP-based models in title creativity tasks.

Second, model interpretability remains limited. Deep learning architectures
such as CLIP and MLPs are inherently difficult to interpret, and the absence of
attention maps or visual explanations restricts the ability to understand which
specific features influence the predictions.

Third, the dataset size is modest—486 examples from 53 participants—and
may not capture the full variability of drawing styles, cultural contexts, or cre-
ative expressions. Generalization to broader populations remains an open ques-
tion, particularly for fine-grained creativity assessments.

Lastly, while the Streamlit application provides real-time evaluation, the ini-
tial loading time for large models like BETO and CLIP can be substantial. This
may pose limitations for low-resource or mobile deployments without further
optimization or model distillation.

These findings validate CLIP as a powerful tool for creativity assessment, par-
ticularly in tasks requiring integration of visual and textual semantics. The ob-
served improvements in originality and elaboration predictions highlight CLIP’s
strength in capturing abstract creative qualities. While text-only models retain
an edge in title-related tasks, CLIP provides a unified framework suitable for
general multimodal prediction. The successful integration into an interactive
Streamlit application further demonstrates its practical utility for real-time cre-
ativity evaluation in both educational and clinical settings.

5 Conclusions

This study demonstrates the effectiveness of CLIP-based multimodal embed-
dings for automated creativity assessment across four key dimensions: original-
ity, elaboration, flexibility, and title creativity. By integrating visual and textual
representations, the proposed approach outperformed previous image- and text-
only baselines, particularly in the evaluation of originality and elaboration. The
Random Forest classifier leveraging raw CLIP embeddings achieved a new state-
of-the-art AUC of 0.92 for originality prediction, while the MLP regressor slightly
improved elaboration prediction.

Although the CLIP-based models did not surpass specialized language mod-
els like BETO in title creativity assessment, they maintained competitive perfor-
mance, highlighting the complementary role of visual context in creative evalua-
tion. Flexibility predictions using CLIP also yielded balanced metrics, indicating
that fused embeddings are capable of capturing thematic diversity without re-
lying solely on linguistic cues.
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The successful deployment of these models in an interactive Streamlit web
application further validates their practicality for real-time creativity evaluation
in educational and clinical settings. Users can receive instant feedback on their
creative work, fostering engagement and supporting personalized interventions.

Overall, this research advances the field of AI-assisted creativity assessment
by introducing a scalable, interpretable, and user-facing framework that bridges
cognitive science and machine learning. Future work may explore multilingual
fine-tuning of CLIP, interpretability enhancements, and expansion to larger and
more diverse datasets.
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